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Note 

Stabilization of Cowell’s Classical Finite Difference Method for 
Numerical Integration 

1. INTRODUCTION 

The classical finite difference methods [l] used for the numerical integration 
of ordinary differential equations integrate polynomials exactly, i.e., without 
truncation errors. Numerical instabilities occur when these classical methods 
are applied to ordinary differential equations whose solutions are not polynomials. 
Only a few of the many methods available for numerical integration take advantage 
of properties of the solution if these are known in advance. Such integration 
methods have been developed previously by Brock and Murray [2] and Dennis [3] 
for exponential solutions by Urabe and Mise [4], Gautschi [S] and Salzer [6] for 
periodic or oscillatory solutions, by Stiefel and Bettis [7-lo], and by Sheffield [I 1] 
for the numerical integration of products of Fourier and ordinary polynomials. 
In [ 121 the author illustrated the stability of the Stiefel-Bettis method for oscillating 
phenomena in weakIy nonlinear mechanical systems with two degrees of freedom 
described by coupled Duffing equations. 

All previous work has been concerned with a special type of solutions. Therefore 
the purpose of this study is to develop a generalized modification of Cowell’s 
classical finite difference method that will stabilize the numerical integration of 
a system that can be considered as a small perturbation of an auxiliary system 
for which an exact solution is known. The highest coefficient of Cowell’s classical 
integration formula will be altered by requiring this formula to integrate the exact 
solution to the auxiliary system. Hence the instability that is inherent in the Cowell 
method will be reduced. Although the basic idea of this modified method has 
been introduced previously, the suggestion to modify only the highest coefficient 
of Cowell’s formula is new. The broad applicability of this modified integration 
method to perturbation theory is obvious. The stabilizing effect is illustrated by 
the example of the Duffing equation forced by a harmonic function. As is well 
known this equation describes many important oscillating phenomena in non- 
linear physical systems. 
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2. THE MODIFIED INTEGRATION METHOD 

For a differential equation of the second order in which the first derivatives 
are absent, 

2 =f(x, t), (2.1) 

the double integration of a given function f(x, t), tabulated at equally spaced 
values of the independent variable t, with step length h, can be performed by 
the use of Cowell’s classical integration formula [I] 

LPx(n) = h2[fn + p&f+2 - 0.5) + f12d2f(n) + jwf(n - 0.5) + /wf(n - 1) 
+ /Wf(n - 1.5) + &W(n - 2) + -a- + /$&f(n + 1 - WWI, (2.2) 

with the definitions 

t, = nh, xn = x(tn), fn = f(& 9 t3> n integer, 

&f(n) =“L > 
Lllf(n - 0.5) = by(n) - Llof(n - l), 

LPf(n) = Lllf(n + 0.5) - dlf(n - 0.5), 
(2.3) 

A dot means differentiation with respect to t. 
For Cowell’s classical method the coefficients /3 are obtained from the assumption 

that the formula (2.2) integrates polynomials exactly. This yields the following 
coefficients which are independent of the interpolation nodes. 

A = 0, B2 = w, A = 0, p4 = -l/240, /I5 = -l/240, 
/3, = -221/60480,... . (2.4) 

By using the formula (2.2) with a finite set of coefficients /I for the integration 
of equations whose solutions are not polynomials, numerical instabilities occur 
due to the truncation errors. In our modified integration method Cowell’s classical 
integration formula will be retained, but the coefficients /3 will be altered in order 
to reduce these instabilities. This effect will be called stabilization by modification 
of the integration coefficients. Let y(t) be the exact solution to the equation 

2 = f(O)(X, t) (2.5) 

which we assume to be slightly different from the equation (2.1). By a slightly 
different equation we mean that f(O)(x, t) has nearly the same behavior as f(x, t) 
such that (2.1) may be considered as a small perturbation of (2.5). 
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We propose to modify only the highest coefficient of Cowell’s integration 
formula (2.2), the other coefficients retain their classical Cowell values. Hence 
it is easily seen that the modified method of order k will perform exactly the 
numerical integration of polynomials up to the degree integrated exactly by 
Cowell’s classical method of order k - 1. In order to reduce the numerical 
instabilities of the integration of (2.1), we require the formula (2.2) to perform 
exactly the integration of the exact solution u(t) to (2.5). Hence inserting 

x(4 = AO, 
f(x, 0 = f ‘“‘MO, 0 = gw, 

into (2.2), we obtain for the highest coefficient in our modified method 

(2.6) 

l&c = wYw~2 - g?z - /3&l’g(rt - 0.5) - p2d2g(n) - **- 

- ,hdk%n + (W) - W))l/~‘“g(n + 1 - (k/2)). (2.7) 

The modified coefficient depends on the characteristics of the considered equation, 
on the integration step length h and on the interpolation nodes indicated by n. 

Using the definitions of the differences (2.3) the integration formula (2.2) can 
be written as follows. 

x n-k1 = ha -G-1 + ~2(ylfn+l + rofn + y-lfn-1 + y-zfn-2 + y-2fn--3 

+ Y-&-r + Y-5fN-5 + .**>, (2.8) 

where the coefficients y are linear expressions in the coefficients /3 [12]. 
If @(x, t) represents the nonlinear part off(x, t) with respect to x such that 

f(x, t) = -oJ2x + @(iv, t), (2.9) 

then by substituting fn+l into (24, we have the following formula. 

x n+1 = P&a -G-1 + h2W7z+1 + rofn + Y-Ifa- + **.>I/(1 + wJ2w, (2.10) 

with 
Q, - @c-htl 3 h,l). n-k1 - 

Now x,x+1 is calculated using some predictor formula and the corresponding 
value is substituted into the right-hand side of the formula (2.10). Finally this 
formula is iterated and used as corrector formula. 

Remark 1. Although it has been formulated only for a single differential 
equation, the method can be easily extended to systems of equations by introducing 
vector functions for x, f, fli , y, g, y1 , @. For further details of this self-evident 
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generalization, we refer to [12] where a similar procedure has been applied to a 
system with two degrees of freedom. 

Remark 2. For a particular system an efficient reduction of the form of the 
modified coefficient can often be developed to streamline its computation. This 
is especially the case if the unperturbed system (2.5) describes the motion of the 
harmonic oscillator (cf. [5-l 11). 

Remark 3. Instead of computing the highest coefficient /3 at every step of inte- 
gration, we could try to calculate this coefficient just once (e.g. at the interpolation 
node corresponding with n = 0), thus reducing the amount of computing. The 
coefficient obtained in this way will be called the constant modified coefficient 
to distinguish it from the variable modified coefficient changing at every inter- 
polation node. The numerical example of Section 3 shows that recomputation 
of the highest coefficient /3 at every step is necessary, otherwise no appreciable 
improvement of the accuracy of the integration is obtained compared to Cowell’s 
classical integration. The idea of recomputation at every step has been introduced 
previously by Gautschi [5]. 

3. NUMERICAL EXAMPLE 

Since Cowell’s classical method becomes more stable with increasing order, 
stabilization by modification of the integration coefficients is more efficient for 
lower orders. Therefore we shall now illustrate the stabilizing effect of the modified 
integration method of order 2. 

Let us consider the Duffing equation forced by a harmonic function 

2 + w2x + 6x3 = Fcos fi’t, 

with the following values of the parameters. 

(3.1) 

w = 1, E = 1, F = 0.002, Q = 1.01. (3.2) 

It is to be noted that the nonlinear term in this equation has a coefficient which is 
not small. 

By Urabe’s method applied to Galerkin’s procedure 113, 141 we computed 
the Galerkin approximation of order 9 to a periodic solution having the same 
period as the forcing term, with a precision of the coefficients of 10-l”. 

xc(t) = 0.200179477536 cos Qt + 0.000246946143 cos 3Qt 
+ 0.OOOOOO304014 cos 5Qt + 0. 000000000374 cos 7Qt 
+ 0.000000000000 cos 952t. (3.3) 
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Under certain assumptions the forced Duffing equation (3.1) can be considered 
as the perturbed equation of the Duffing equation forced by a Jacobian elliptic 
function 

f + w2x + ex3 = F ~n(ii'~t 1 m), (3.4) 

since the Jacobian elliptic function cn(u 1 m) reduces to the circular cosine function 
cos u when the parameter m of the Jacobian elliptic function tends to zero [15]. 
Therefore m has to be small and 52, nearly equal to Sz. Hence for the numerical 
integration of the perturbed equation (3.1) we propose to modify the highest 
integration coefficient /3 by requiring Cowell’s classical formula to integrate the 
exact solution of the considered unperturbed equation (3.4). 

The exact solution to the elliptic forced Duffing equation (3.4), satisfying the 
initial conditions 

Y(O) = A and Y(O) = 0, (3.5) 

is the Jacobian elliptic function 

y(t) = A cn(S2,t 1 m) (3.6) 

if the following relations between the parameters hold [16]; 

i&, = (co2 - (F/A) + cAz)l12 and m = EA~/~Q,,~. (3.7) 

Taking for A the value of the Gale&in approximation xG at t = 0, the values of 
52, and m are found to be 

i-2, = 1.014983824649 and m = 0.019496786481. (3.8) 

Therefore the exact solution of the unperturbed equation is completely known 
and we can compute the highest coefficient /I from (2.7), where 

g(t) = [(F/A) - w2 - eA2 cn2(Qot I m)]A cn(Q,t / m). (3.9) 

Then we perform the numerical integration of the perturbed equation using 
for p2 Cowell’s classical coefficient, the constant modified coefficient and the 
variable modified coefficient, respectively. The values of x and f in the previous 
points t, , t-1 are computed from the Galerkin approximation. Table I shows the 
Gale&in approximation and the results of the integrations with step length 
h = 2rr/45Q. Table II gives the absolute values of the maximum differences 
between the results of the integrations and the Galerkin approximation for various 
values of the step length. Compared to the Cowell integration, the accuracy is 
only improved if the variable modified coefficient is used. This reduces the numeri- 
cal instabilities of Cowell’s classical method, revealing an average improvement 
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TABLE I 

Numerical integration of the forced Duthng equation with h = 2a/45Q 

Modified integration Modified integration 
n Galerkin approximation Cowell integration j$ constant fiz variable 

50 0.153222617706 0.153221820532 0.153223122231 0.153222617752 
100 0.034637560945 0.034635336024 0.034639160231 0.034637561153 
150 -0.099842944818 -0.099845665393 -0.099840846831 -0.099842944686 
200 -0.188230597866 -0.188231801036 -0.188229677172 -0.188230598359 
250 -0.188230597866 -0.188228299239 -0.188232280437 -0.188230598913 
300 -0.099842944819 -0.099837091488 -0.099847220777 -0.099842945545 
350 0.034637560945 0.034644488045 0.034632356420 0.034637561485 
400 0.153222617706 0.153226926360 0.153219326288 0.153222620013 
450 0.200426728066 0.200425293937 0.200427793954 0.200426731316 
500 0.153222617706 0.153215037421 0.153228206330 0.153222619452 
550 0.034637560945 0.034627120554 0.034645328565 0.034637558931 
600 -0.099842944818 -0.099851047392 -0.099836796644 -0.099842950874 
650 -0.188230597866 -0.188231841141 -0.188229634560 -0.188230605602 
700 -0.188230597866 -0.188223555630 -0.188235835473 -0.188230602390 
750 -0.099842944819 -0.099830760861 -0.099851979205 -0.099842941518 
800 0.034637560945 0.034648775037 0.034629122124 0.034637572665 
850 0.153222617706 0.153227118404 0.153219164611 0.153222633338 
900 0.200426728066 0.200421900915 0.200430333003 0.200426739068 
950 0.153222617706 0.153210744788 0.153231436465 0.153222615493 

1000 0.034637560945 0.034624856197 0.034647049050 0.034637543126 

TABLE II 

Error vs step length 

Step length 
Modified integration Modified integration 

Cowell integration j3z constant bz variable 

2a/45Q 1.4 x 10-b 1.0 x IO-5 1.8 x 1O-8 
2a/89Q 8.4 x lo-’ 6.4 x lo-’ 1.5 x 10-g 
271117952 5.1 x 10-S 3.9 x 10-s 1.3 x 10-10 

of about three decimal digits. Further, the modified integration using this coefficient 
and performed with step length 2~/4552 yields slightly better results than the 
Cowell integration with step length 2~r/179Q, the total computation time being 
reduced by a factor 2. Therefore it is worthwhile to apply the modified algorithm 
since it enables us to use increased step sizes and to decrease the total amount of 
computing. 

All computations have been carried out on the computer CDC 6400 at the 
University of Brussels. 
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